Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference
Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Aviral Kumar, Rishabh Agarwal, Sridhar Thiagarajan, Craig Boutilier, Aleksandra Faust
Recent studies indicate that effectively utilizing inference-time compute is crucial for attaining good performance from large language models (LLMs). Specifically, the Best-of-N (BoN) inference strategy, where an LLM generates multiple responses and a verifier selects the best, has shown strong empirical performance. Motivated by this, we develop a novel inference-aware fine-tuning paradigm, which encompasses the BoN-aware inference framework as a special case. We devise the first imitation learning and reinforcement learning (RL) methods for fine-tuning LLMs using BoN, overcoming the challenging, non-differentiable argmax operator in BoN. We empirically demonstrate that our BoN-aware models implicitly learn a per-example "meta-strategy", which interleaves best responses with more diverse responses that might be better suited to a test-time input—a process reminiscent of the exploration-exploitation trade-off in RL. Our experiments demonstrate the effectiveness of BoN-aware fine-tuning in terms of improved performance and inference-time compute. In particular, we show that our methods improve the BoN performance of Gemma 2B on Hendrycks MATH from 26.8% to 30.8%, and Pass@K from 60% to 67%.