Feast Your Eyes: Mixture-of-Resolution Adaptation for Multimodal Large Language Models

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper Supplemental

Authors

Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng, Xiaoshuai Sun, Rongrong Ji

Abstract

In existing multimodal large language models (MLLMs), image resolution plays a significant role for granular visual recognition. However, directly increasing image resolution leads to expensive computational cost for MLLMs. In this paper, we reveal that a combination of low- and high-resolution visual features can efficiently mitigate this shortcoming. Based on this principle, we propose a novel and efficient method for MLLMs, termed Mixture-of-Resolution Adaptation (MRA). In particular, MRA adopts two visual pathways for images of different resolutions, where high-resolution visual information is embedded into the low-resolution pathway via the novel mixture-of-resolution adapters (MR-Adapters). This design also greatly reduces the input sequence length of MLLMs. To validate MRA, we apply it to a recent MLLM called LLaVA, and term the new model LLaVA-HR. We conduct extensive experiments on 17 vision-language (VL) tasks, which show that LLaVA-HR outperforms existing MLLMs on 15 VL tasks, e.g., +5.2\% on TextVQA. More importantly, both training and inference of LLaVA-HR remain efficient with MRA, e.g., 20 training hours and faster inference speed than LLaVA-NeXT. Source codes are released at: https://github.com/luogen1996/LLaVA-HR.