What Secrets Do Your Manifolds Hold? Understanding the Local Geometry of Generative Models

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper

Authors

Ahmed Imtiaz Humayun, Ibtihel Amara, Cristina Nader Vasconcelos, Deepak Ramachandran, Candice Schumann, Junfeng He, Katherine Heller, Golnoosh Farnadi, Negar Rostamzadeh, Mohammad Havaei

Abstract

Deep Generative Models are frequently used to learn continuous representations of complex data distributions by training on a finite number of samples. For any generative model, including pre-trained foundation models with Diffusion or Transformer architectures, generation performance can significantly vary across the learned data manifold. In this paper, we study the local geometry of the learned manifold and its relationship to generation outcomes for a wide range of generative models, including DDPM, Diffusion Transformer (DiT), and Stable Diffusion 1.4. Building on the theory of continuous piecewise-linear (CPWL) generators, we characterize the local geometry in terms of three geometric descriptors - scaling ($\psi$), rank ($\nu$), and complexity/un-smoothness ($\delta$). We provide quantitative and qualitative evidence showing that for a given latent vector, the local descriptors are indicative of post-generation aesthetics, generation diversity, and memorization by the generative model. Finally, we demonstrate that by training a reward model on the 'local scaling' for Stable Diffusion, we can self-improve both generation aesthetics and diversity using geometry sensitive guidance during denoising. Website: https://imtiazhumayun.github.io/generative_geometry.