Predicate Hierarchies Improve Few-Shot State Classification

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper Supplemental

Authors

Emily Jin, Joy Hsu, Jiajun Wu

Abstract

State classification of objects and their relations is core to many long-horizon tasks, particularly in robot planning and manipulation. However, the combinatorial explosion of possible object-predicate combinations, coupled with the need to adapt to novel real-world environments, makes it a desideratum for state classification models to generalize to novel queries with few examples. To this end, we propose PHIER, which leverages predicate hierarchies to generalize effectively in few-shot scenarios. PHIER uses an object-centric scene encoder, self-supervised losses that infer semantic relations between predicates, and a hyperbolic distance metric that captures hierarchical structure; it learns a structured latent space of image-predicate pairs that guides reasoning over state classification queries. We evaluate PHIER in the CALVIN and BEHAVIOR robotic environments and show that PHIER significantly outperforms existing methods in few-shot, out-of-distribution state classification, and demonstrates strong zero- and few-shot generalization from simulated to real-world tasks. Our results demonstrate that leveraging predicate hierarchies improves performance on state classification tasks with limited data.