Tight Lower Bounds under Asymmetric High-Order Hölder Smoothness and Uniform Convexity

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper Supplemental

Authors

Cedar Site Bai, Brian Bullins

Abstract

In this paper, we provide tight lower bounds for the oracle complexity of minimizing high-order Hölder smooth and uniformly convex functions. Specifically, for a function whose $p^{th}$-order derivatives are Hölder continuous with degree $\nu$ and parameter $H$, and that is uniformly convex with degree $q$ and parameter $\sigma$, we focus on two asymmetric cases: (1) $q > p + \nu$, and (2) $q < p+\nu$. Given up to $p^{th}$-order oracle access, we establish worst-case oracle complexities of $\Omega\left( \left( \frac{H}{\sigma}\right)^\frac{2}{3(p+\nu)-2}\left( \frac{\sigma}{\epsilon}\right)^\frac{2(q-p-\nu)}{q(3(p+\nu)-2)}\right)$ in the first case with an $\ell_\infty$-ball-truncated-Gaussian smoothed hard function and $\Omega\left(\left(\frac{H}{\sigma}\right)^\frac{2}{3(p+\nu)-2}+ \log\log\left(\left(\frac{\sigma^{p+\nu}}{H^q}\right)^\frac{1}{p+\nu-q}\frac{1}{\epsilon}\right)\right)$ in the second case, for reaching an $\epsilon$-approximate solution in terms of the optimality gap. Our analysis generalizes previous lower bounds for functions under first- and second-order smoothness as well as those for uniformly convex functions, and furthermore our results match the corresponding upper bounds in this general setting.