Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference
Wentao Zhang, Junliang Guo, Tianyu He, Li Zhao, Linli Xu, Jiang Bian
People interact with the real-world largely dependent on visual signal, which are ubiquitous and illustrate detailed demonstrations. In this paper, we explore utilizing visual signals as a new interface for models to interact with the environment. Specifically, we choose videos as a representative visual signal. And by training autoregressive Transformers on video datasets in a self-supervised objective, we find that the model emerges a zero-shot capability to infer the semantics from a demonstration video, and imitate the semantics to an unseen scenario. This allows the models to perform unseen tasks by watching the demonstration video in an in-context manner, without further fine-tuning. To validate the imitation capacity, we design various evaluation metrics including both objective and subjective measures. The results show that our models can generate high-quality video clips that accurately align with the semantic guidance provided by the demonstration videos, and we also show that the imitation capacity follows the scaling law.