Training-Free Activation Sparsity in Large Language Models

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper Supplemental

Authors

James Liu, Pragaash Ponnusamy, Tianle Cai, placeholder, Yoon Kim, Ben Athiwaratkun

Abstract

Activation sparsity can enable practical inference speedups in large language models (LLMs) by reducing the compute and memory-movement required for matrix multiplications during the forward pass. However, existing methods face limitations that inhibit widespread adoption. Some approaches are tailored towards older models with ReLU-based sparsity, while others require extensive continued pre-training on up to hundreds of billions of tokens. This paper describes TEAL (Training-Free Activation Sparsity in LLMs), a simple training-free method that applies magnitude-based activation sparsity to hidden states throughout the entire model. TEAL achieves 40-50\% model-wide sparsity with minimal performance degradation across Llama-2, Llama-3, and Mistral families, with sizes varying from 7B to 70B. We improve existing sparse kernels and demonstrate wall-clock decoding speed-ups of up to 1.53× and 1.8× at 40\% and 50\% model-wide sparsity. TEAL is compatible with weight quantization, enabling further efficiency gains.