Second-Order Min-Max Optimization with Lazy Hessians

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper Supplemental

Authors

Lesi Chen, Chengchang Liu, Jingzhao Zhang

Abstract

This paper studies second-order methods for convex-concave minimax optimization. Monteiro & Svaiter (2012) proposed a method to solve the problem with an optimal iteration complexity of $\mathcal{O}(\epsilon^{-3/2})$ to find an $\epsilon$-saddle point. However, it is unclear whether thecomputational complexity, $\mathcal{O}((N+ d^2) d \epsilon^{-2/3})$, can be improved. In the above, we follow Doikov et al. (2023) and assume the complexity of obtaining a first-order oracle as $N$ and the complexity of obtaining a second-order oracle as $dN$. In this paper, we show that the computation cost can be reduced by reusing Hessian across iterations. Our methods take the overall computational complexity of $\tilde{\mathcal{O}}( (N+d^2)(d+ d^{2/3}\epsilon^{-2/3}))$, which improves those of previous methods by a factor of $d^{1/3}$. Furthermore, we generalize our method to strongly-convex-strongly-concave minimax problems and establish the complexity of $\tilde{\mathcal{O}}((N+d^2) (d + d^{2/3} \kappa^{2/3}) )$ when the condition number of the problem is $\kappa$, enjoying a similar speedup upon the state-of-the-art method. Numerical experiments on both real and synthetic datasets also verify the efficiency of our method.