CertainlyUncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper Supplemental

Authors

Khyathi Chandu, Linjie Li, Anas Awadalla, Ximing Lu, Jae Sung Park, Jack Hessel, Lijuan Wang, Yejin Choi

Abstract

The ability to acknowledge the inevitable uncertainty in their knowledge and reasoning is a prerequisite for AI systems to be truly truthful and reliable. In this paper, we present a taxonomy of uncertainty specific to vision-language AI systems, distinguishing between epistemic uncertainty (arising from a lack of information) and aleatoric uncertainty (due to inherent unpredictability), and further explore finer categories within. Based on this taxonomy, we synthesize a benchmark dataset, CertainlyUncertain, featuring 178K visual question answering (VQA) samples as contrastive pairs. This is achieved by 1) inpainting images to make previously answerable questions into unanswerable ones; and 2) using image captions to prompt large language models for both answerable and unanswerable questions. Additionally, we introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error, to address the shortcomings of existing metrics. Despite the recent rapid progress in vision-language models (VLMs), evaluations on our benchmark show that they perform poorly in uncertain scenarios. Further experiments demonstrate that supervised fine-tuning with CertainlyUncertain enhances the performance of VLMs, and reduces the calibration error. These improvements extend beyond our benchmark to existing refusal-oriented datasets and show positive results on reducing hallucinations, while maintaining performance on standard VQA benchmarks. Our work underscores the importance of addressing uncertainty in vision-language AI systems to improve their reliability and trustworthiness in real-world applications.